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The performance of superconducting quantum circuits is primarily limited by dielectric loss due
to interactions with two-level systems (TLS). State-of-the-art circuits with engineered material in-
terfaces are approaching a limit where dielectric loss from bulk substrates plays an important role.
However, a microscopic understanding of dielectric loss in crystalline substrates is still lacking. In
this work, we show that boron acceptors in silicon constitute a strongly coupled TLS bath for
superconducting circuits. We discuss how the electronic structure of boron acceptors leads to an
effective TLS response in silicon. We sweep the boron concentration in silicon and demonstrate the
bulk dielectric loss limit from boron acceptors. We show that boron-induced dielectric loss can be
reduced in a magnetic field due to the spin-orbit structure of boron. This work provides the first
detailed microscopic description of a TLS bath for superconducting circuits, and demonstrates the
need for ultrahigh purity substrates for next-generation superconducting quantum processors.

Superconducting quantum processors are a leading
platform for quantum computation [1, 2] and simula-
tion [3]. The performance of superconducting quantum
processors is currently limited by high error rates [4]
from coupling of qubits to unwanted energy dissipation
channels such as quasiparticles, vortices, radiation, par-
asitic modes, and two-level systems (TLS) [5, 6]. TLSs
are atomic-scale defects that are described by the stan-
dard tunneling model [7, 8]. While the microscopic
nature of TLSs remains elusive, they are primarily lo-
cated inside amorphous materials at interfaces instead
of the crystalline bulk substrate [9, 10]. TLSs can have
strong electric and elastic dipoles [11]. At the macro-
scopic level, this leads to dielectric loss, which is cur-
rently the dominant dissipation mechanism for super-
conducting qubits [10, 12]. Losses from interface TLSs
can be reduced with improved surface treatments, ma-
terial choices [13], and circuit designs with reduced sur-
face participation [14]. With advances on these fronts,
state-of-the-art superconducting qubits now show life-
times approaching 1 ms [15]. For such low-loss de-
vices, dielectric loss from the bulk substrate becomes
non-negligible [16, 17]. For instance, the best reported
bulk loss tangent for sapphire (≈ 2 × 10−8) limits the
quality factor to 50 million [16], and the qubit lifetime
to 1.5 ms. These results indicate the need for further
advances in our understanding of bulk dielectric loss for
substrates of superconducting circuits.

Silicon is a widely used material for quantum de-
vices based on superconducting, spintronic, mechan-
ical, and photonic systems [18–23]. High-resistivity
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(> 1000Ω · cm), float-zone (FZ) grown silicon substrates
show bulk dielectric loss tangents below 5×10−7 [24–26],
and are a standard choice to realize high-performance
superconducting devices. However, a microscopic under-
standing of the origin of bulk dielectric loss in silicon is
currently missing. In this work, we identify crystalline
point defects associated with boron acceptors in silicon
as a bulk TLS bath with strong electric dipolar coupling
to superconducting circuits. We begin with a theoreti-
cal description of how the microscopic electronic struc-
ture of boron in silicon can result in TLS loss for super-
conducting microwave circuits. We use superconducting
resonator loss measurements under varying doping con-
centration, microwave power, temperature, and device
geometry to confirm the theoretical predictions. In addi-
tion, we experimentally show that the spin-orbit nature
of boron acceptors results in a reduction of loss satura-
tion power under a magnetic field. These observations
are explained by the four-level fine structure of boron
and support the identification of boron acceptors as the
TLS bath. These results provide guidelines on silicon
substrate purity requirements for low-loss qubits, and
constitute the first microscopic identification of a TLS
bath in a crystalline substrate.

For superconducting microwave circuits operating at
low temperature and in the single-photon regime, defect-
induced dielectric loss can arise from coupling to TLSs
and bulk crystalline defects (Fig. 1(a)). TLSs can
be described by the standard tunneling model (STM)
(Fig. 1(b)). They strongly couple to electric (E) and
strain (S) fields through the asymmetry energy of the
double-well potential: ε = ε0 + 2γ · S + 2p · E. Typical
TLS has a deformation potential (γ) of 1 eV [27] and an
electric dipole moment (p) of 3 D [28]. The TLS can be
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FIG. 1. Comparison of amorphous two-level systems
and boron acceptors in silicon. (a) Schematic of the cross-
section of planar superconducting devices. TLS loss originates
from defects or disorder in the amorphous interface layers and
the bulk dielectric substrate. Bulk crystalline defects may also
contribute to TLS loss. (b) Standard tunneling model of TLS.
The asymmetry energy (ε) of the double-well potential cou-
ples strongly to electric field (E) and strain (S) through elec-
tric dipole (p) and deformation potential (γ). ∆0 denotes the
tunneling rate between the two wells. (c) Left: Valence band
maximum of silicon showing the split-off (SO), heavy-hole
(HH), and light-hole (LH) bands. Right: Electronic struc-
ture of boron acceptors in the hole picture showing coupling
to electric, strain, and magnetic fields as described by the in-
teraction Hamiltonians HE , HS , and HB in the main text.
Γ↑ (Γ↓): orbital relaxation rate. Γs: relaxation rate between
the generalized spin states.

described by the following Hamiltonian [29]:

H =
1

2
∆Eσz + (γ · S+ p ·E)

(
ε0
∆E

σz +
∆0

∆E
σx

)
(1)

where ∆0 is the tunneling rate between the two poten-
tial wells, ε0 is the static asymmetry energy, ∆E =√

ε20 +∆2
0 is the energy splitting between the two levels,

and σ denotes the Pauli operator. Due to their amor-
phous nature, TLS parameters are sampled from a broad
distribution.

In contrast to highly disordered TLS defects in amor-
phous materials, silicon hosts high-quality spin (spin-
orbit) qubits based on crystalline donor (acceptor) de-
fects [30–32]. The electronic structure of donors and
acceptors are well studied and can be used to predict
their impact on superconducting circuits. Donor (e.g.,
phosphorus, bismuth) defects weakly couple to their en-
vironment via magnetic dipole interactions and show long
spin lifetimes [30, 31, 33]. Magnetic dipole interactions
are much weaker compared to electric dipole interactions,
and the donor spin resonances are typically detuned from
circuits at zero magnetic field. Donor defects therefore
cannot result in the frequently observed saturable TLS
loss in superconducting circuits. In contrast, other bulk

crystalline defects can display Hamiltonians similar to
TLSs and cause dielectric loss. In particular, acceptor
(e.g., boron, aluminum) defects have strong electric and
elastic dipoles, and therefore exhibit short lifetimes [34–
36]. In this work, we investigate acceptors as a potential
origin of a bulk TLS bath in silicon. Our study focuses
on boron defects, one of the most common acceptor-type
contaminants in silicon.
The electronic structure of boron acceptors inherits

the properties of the valence band maximum of silicon
(Fig. 1(c)). The ground state is an effective spin-3/2 sys-
tem with a two-fold orbital degeneracy and a two-fold
spin degeneracy. The linear coupling of the ground state
to magnetic (HB), electric (HE) and strain (HS) fields
can be described as [37]:

HB = µB

[
g1(JxBx + c.p.) + g2(J

3
xBx + c.p.)

]
(2)

HE =
pB√
3
(Ex{Jy, Jz}+ + c.p.) (3)

HS = γBSxxJ
2
x +

γ′
B√
3
Sxy{Jx, Jy}+ + c.p. (4)

where J is the spin-3/2 operator, {·, ·}+ denotes the
anticommutator, c.p. denotes cyclic permutation, g1 =
−1.07 and g2 = −0.03 are the g-factors [35], pB = 0.26 D
is the electric dipole moment [35], and γB = −1.42 eV
and γ′

B = −3.7 eV are deformation potentials [36]. The
two-fold orbital degeneracy can be lifted with static lat-
tice strain and/or electric field (HS +HE), which results
in a TLS-like level structure. Within each orbital branch,
the spin degeneracy can be lifted with a static magnetic
field (HB). The magnitudes of the electric dipole (pB)
and deformation potentials (γB , γ

′
B) for boron acceptors

are similar to those of conventional TLSs (p and γ in
Eq. 1) in amorphous materials. The strong correspon-
dence in orbital structures and dipole strengths between
borons and TLSs suggests that boron acceptors should
lead to saturable dielectric loss like conventional TLSs.
In the following, we test the hypothesis of boron ac-

ceptors constituting a bulk TLS bath and a strong di-
electric loss channel. We use superconducting resonators
to probe acceptor-induced loss under varying acceptor
concentration, temperature, power, and magnetic fields.
To access a bulk dielectric loss dominated regime, we
first study the geometric dependence of loss under our
fabrication procedure with quarter-wave resonators of
varying dimensions (Fig. 2(a)) and frequencies ranging
from 4.3 GHz to 7.7 GHz. For resonators on both un-
doped ([B] < 8 × 1011 cm−3) and boron-doped ([B] =
7.4 × 1014 cm−3) FZ silicon, we observe improvement
of internal quality factors (Qi) at high excitation pow-
ers (see Supplemental Material Fig. S2 [38]). The power
dependence shows the presence of TLS loss in both sub-
strates. For undoped silicon, the single-photon Qi scales
inversely with the surface participation ratio, indicating
the loss is dominated by surface TLSs (Fig. 2(b)) [10].
On boron-doped silicon, the single-photon Qi does not
show such an inverse scaling with surface participation
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FIG. 2. Bulk two-level system loss in a boron doped
silicon substrate. (a) Optical image of the device with eight
quarter-wave resonators capacitively coupled to a shared feed-
line. The resonator trace width is swept from 2 µm to 50 µm
to access different surface participation ratios while main-
taining 50 Ω impedance. The highlighted resonator (green)
has the lowest surface participation. (b) Internal quality
factor (Qi) at single-photon level as a function of surface
participation ratio. Qi of resonators on undoped (doped,
[B] = 7.4 × 1014 cm−3) silicon is measured at ⟨n⟩ ≈ 0.1
(⟨n⟩ ≈ 0.01). Data points shaded in green are measured from
the lowest surface participation ratio resonator highlighted
in (a). (c) Power dependent Qi at different temperatures for
low surface participation ratio resonators on boron doped sil-
icon. ⟨Qi⟩ represents the average of power dependence from
eight resonators. Inset: temperature dependence of low-power
Qi (Excitation power -155 dBm, ⟨n⟩ < 0.1).

(Fig. 2(b)). The energy participation in the bulk silicon
substrate is independent of geometry and is near unity.
The absence of negative correlation between the surface
participation ratio and Qi confirms that TLS loss is no
longer surface limited on boron-doped silicon, and that
we are probing TLSs in the bulk silicon substrate [17].

We use the resonator design with the lowest surface
participation to probe bulk TLS loss in boron-doped
silicon ([B] = 7.4 × 1014 cm−3). The sample contains
eight quarter-wave resonators evenly spaced in a 1 GHz
band centered around 6 GHz (see Supplemental Mate-
rial Fig. S1(b) [38]). The average power-dependent Qi of
the resonators at different mixing chamber temperatures
(TMXC) is plotted in Fig. 2(c). For all resonators, Qi

consistently shows strong reduction at low powers. At
the same time, low-power Qi increases when thermal en-
ergy is comparable to the resonator frequency (Fig. 2(c),
inset). This thermal saturation feature is another in-

dication that bulk loss tangent in boron doped silicon is
dominated by TLS-like atomic defects [5]. These observa-
tions confirm the TLS-acceptor correspondence discussed
in Fig. 1, and we conclude that boron acceptors act as
a TLS loss channel in the bulk substrate. We note that
the bulk TLS loss from boron defects appears broadband
(> 1 GHz) based on the consistent saturation behaviors
of resonators at different frequencies. This broadband
behavior is likely related to a broad inhomogeneous dis-
tribution of boron orbital splittings due to an inhomoge-
neous strain distribution near the metal-silicon interface
(see Supplemental Material Fig. S7 and Fig. S8 [38, 39])
and the local disorder in the environment of individual
defects. Therefore, performing direct loss tangent mea-
surement on low or high strain samples may reveal a dif-
ferent loss behavior [16, 40].

We quantify the impact of acceptor-induced dielectric
loss on superconducting qubits by studying supercon-
ducting resonator low-power Qi as a function of dopant
type and doping concentration. Our first principles esti-
mation (see Supplemental Material Sec. III C [38]) sug-
gests acceptor-induced dielectric loss can be significant
due to the near-unity energy participation of the bulk.
However, the exact magnitude of acceptor-induced loss
tangent strongly depends on the strain distribution and
the electric dipole moment, and necessitates experimen-
tal characterization.

We fabricate resonators identical to the ones studied
in Fig. 2(c) on undoped, phosphorus-doped, and boron-
doped substrates [38]. The average low-power Qi at
TMXC = 8 mK as a function of doping concentration
is summarized in Fig. 3. For undoped silicon and lightly
boron-doped ([B] = 4.5 × 1012 cm−3) silicon, low-power
Qi saturates around 106, consistent with the surface TLS
limit in Fig. 2(b). For substrates with higher boron con-
centration, Qi shows strong anti-correlation with boron
concentration. This anti-correlation is consistent with
the assignment of boron acceptors as a bulk TLS bath.
We extrapolate the bulk limit of Qi from boron doping
for state-of-the-art devices using a linear fit of loss and
boron doping. The extrapolation suggests bulk-limited
Qi would be limited to 107 and 108 for boron concen-
trations of 1012 cm−3 and 1011 cm−3, respectively. We
note that state-of-the-art quantum devices have lifetimes
(T1) around 1 ms, corresponding to a quality factor of
Q = 2πf ×T1 ≈ 3×107 at f = 5 GHz. Based on our ex-
trapolation and considering bulk dielectric loss alone, re-
alizing such high-performance devices on silicon requires
the use of ultra high-purity silicon with boron concentra-
tion below 3× 1011 cm−3 (resistivity > 50× 103 Ω · cm).
Further lifetime improvement will necessitate high-purity
substrates free of boron defects and may require advance-
ments in silicon wafer growth. We note that low-power
Qi of resonators on phosphorus doped silicon does not
show excess loss from the bulk. The lack of phosphorus
induced loss is consistent with the prediction based on
its electronic structure which does not contain any or-
bital degeneracy in its ground state (see Supplemental
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FIG. 3. Dielectric loss in silicon under different doping
conditions. For substrates with high boron concentration,
we show the average Qi with ⟨n⟩ ≈ 0.003 (red circle) and
⟨n⟩ ≈ 0.6 (red square). For substrates with low boron concen-
tration, Qi is surface TLS limited, and we report the average
Qi with ⟨n⟩ ≈ 0.6 due to the challenge of Qi extraction with
an overcoupled (Qe ≈ 4× 104) resonator design (see Supple-
mental Material Fig. S3 [38]). Qi on phosphorus doped silicon
is consistent with the surface TLS limit. The gray dashed line
is a linear fit (logQi = − log(a × ρ)) of loss at ⟨n⟩ ≈ 0.003
to boron concentration (ρ), and is extrapolated to a boron
concentration of 5 × 1010 cm−3. The gray band represents
the 95% confidence band. The boron concentration is mea-
sured using secondary ion mass spectrometry (SIMS) while
phosphorus concentration is estimated using wafer resistiv-
ity. The boron concentration in undoped silicon is below the
detection limit of SIMS (8×1011 cm−3). The boron doped sil-
icon with highest doping concentration is Czochralski grown
whereas all other substrates are FZ grown. The top x-axis
shows the expected room-temperature wafer resistivity from
boron doping.

Material Fig. S6 [38, 41]).
Having shown the bulk TLS behavior of boron accep-

tors, we turn to probing key distinctions between boron
and conventional TLS [11]. In the following, we demon-
strate that the spin-orbit coupling and four-level nature
of boron acceptors leads to a strong magnetic field depen-
dence of boron-induced dielectric loss. Fig. 4(a) shows
the level structure of boron acceptors. Under zero mag-
netic field, the level structure resembles the structure of
a conventional TLS, with stray strain and electric field
determining the orbital splitting (ωs). Magnetic fields
lift spin degeneracies and result in a four-level struc-
ture (Fig. 4(b)). The effective g-factors within the two
orbital branches are determined by the exact strain envi-
ronment, which in general leads to unequal Zeeman split-
tings (∆ω1 ̸= ∆ω2). When the orbital splitting is much
greater than spin splitting, the lower orbital branch ex-
hibits two long-lived generalized spin states [32].

We fabricate resonators with narrow traces (10 µm)
and wide gaps (40 µm) on boron-doped silicon ([B] =
7.4× 1014 cm−3) to study how the loss is modified under
an in-plane magnetic field due to the four-level struc-

ture of boron. The narrow-trace geometry is chosen to
mitigate vortex formation [42], while the wide-gap con-
figuration helps maintain a low surface-participation ra-
tio for detecting bulk loss. Under a small magnetic field
(30 G), we observe an improvement in the low-power Qi

compared to the zero-field case (Fig. 4(c)). We further
investigate how loss evolves under a magnetic field by
measuring the power-dependent Qi as a function of mag-
netic field (Fig. 4(d)). We observe three key features: (1)
the saturation power of boron-induced loss is reduced by
an order of magnitude under a non-zero magnetic field
(Fig. 4(e) and Supplemental Material Fig. S10 [38]), (2)
the loss reduction induced by magnetic field saturates at
a magnetic field as low as 5 G, (3) high-power Qi shows
a drastic improvement under a magnetic field.

A simplified description of the change in saturation
power in a magnetic field can be explained using the
four-level system dynamics of boron acceptors in a mag-
netic field. Under zero magnetic field, boron acceptors
are equivalent to standard TLSs. Driving the resonator
at ωR excites the nearby boron defects (ωs ≈ ωR) with
a rate Ω. Acceptor-induced dielectric loss is saturated
when the excitation rate is comparable to the fast or-
bital relaxation rate Ω ∼ ΓTLS↓/2. For magnetic fields
where the differential Zeeman splitting |∆ω2 −∆ω1| be-
comes greater than the resonator and boron linewidths
(∼ 5 G), transition associated with one of the ground
states (|g−⟩) is selectively driven. Therefore, the ground
state population is pumped to the other long-lived dark
state (|g+⟩) with a rate of ∼ 4|Ω|2/ΓFLS↓. Such mi-
crowave pumped boron acceptors are trapped in |g+⟩ and
decoupled from the resonator. This decrease of the effec-
tive number of TLSs results in reduced dielectric loss.
In addition, the loss saturation occurs at a lower power
where the pumping rate equals the dark state decay rate
(4|Ω|2/ΓFLS↓ ∼ ΓFLS↑), assuming Γs ≪ ΓFLS↓,↑. We
use the measured ratio of saturation powers with and
without magnetic fields to estimate the thermal occu-
pancy (n̄) and the effective sample temperature. Our
master equation model for four-level system saturation
indicates an effective sample temperature of ∼ 75mK
based on the measured saturation power ratios (see Sup-
plemental Material Fig. S10 for a detailed analysis [38]).
At elevated temperatures, the magnetic response be-
comes weaker (see Supplemental Material Fig. S5 [38])
due to exponential activation of thermal occupancy and
ΓFLS↑/ΓFLS↓ = n̄/(1 + n̄) where n̄ < 1. We observe a
complete disappearance of dielectric loss reduction in re-
sponse to magnetic field at TMXC = 200 mK (Fig. 4(e)).
Finally, we note that the loss reduction is higher at higher
excitation powers, which may be accounted by the reduc-
tion of loss from a large ensemble of off-resonant boron
acceptors.

We also perform a magnetic field study of conventional
TLSs at surfaces. To our knowledge, magnetic response
of such amorphous TLSs has not been reported before.
We intentionally introduce a high density of amorphous
TLSs by drop casting Hydrogen Silsesquioxane (HSQ)



5

Ω(ωR)

B = 0 B � 0

(a)

(c)

(d)

-140 -120 -100 -80
Excitation power (dBm)

0

5

10

15

M
ag

ne
tic

fie
ld

(G
)

104

105

106

〈Qi〉

Qi = 3 x 104 Qi = 3 x 105 Qi = 1 x 106

-140 -120 -100 -80
Excitation power (dBm)

105

106

〈Q
i〉

8 mK, 30 G
8 mK, 0 G

200 mK, 30 G
200 mK, 0 G

(e)
Δω1

ωB

6035.5 6036.0 6036.5
Frequency (MHz)

0
-2
-4
-6
-8

|S
21

|(
dB

)

0 G, Qi = 4.6 x 104

30 G, Qi = 6.8 x 104 

(b)

(f)

-120 -100 -80
Excitation power (dBm)

0

5

10

15

M
ag

ne
tic

fie
ld

(G
)

6 x 104

7 x 104

8 x 1046.5 x 104 8 x 104

〈Qi〉

Ω(ωR)ΓTLS↓

ΓFLS↓

ΓFLS↑

Γs
Δω2

ΓTLS↑

FIG. 4. Magnetic response of four-level system dielectric loss in boron doped silicon. Simplified level structure of
boron acceptors under (a) zero and (b) a small magnetic field. (a) ΓTLS↑ (ΓTLS↓): orbital relaxation rate, ωB : boron resonance
frequency. (b) The effective two-level structure of boron is modified to a four-level system in a magnetic field. ΓFLS↑ (ΓFLS↓):
orbital relaxation rate between |e−⟩ and |g+⟩, orbital decay paths between other states are not shown for simplicity. Γs:
relaxation rate between the generalized spin states |g+⟩ and |g−⟩. Ω(ωR): Rabi frequency at the resonator frequency (ωR). (c)
Low-power (-135 dBm) |S21| measurement of a resonator on boron doped silicon at TMXC = 8 mK. Qi increases in a small
magnetic field (30 G). (d) Power-dependent Qi under different magnetic fields for resonators on boron doped silicon. The
dashed lines are interpolated Qi isocontours. Qi shows an overall increase at higher magnetic fields. (e) Power-dependent Qi

measured at TMXC = 8 mK and 200 mK under zero magnetic field and 30 G. (f) Power-dependent Qi under different magnetic
fields for resonators on undoped silicon with intentionally introduced amorphous TLS. No magnetic field response is observable.
Data in (d,e) represent the average Qi of eight resonators while data in (f) represent the average Qi of three resonators.

on high-Q resonators fabricated on undoped silicon (see
Supplemental Material Fig. S1(d) [38]). In contrast to
the acceptor-induced loss, the HSQ-induced loss remains
constant in small magnetic fields (Fig. 4(f)). We empha-
size that the lack of magnetic field response in our ex-
perimental regime cannot rule out the existence of mag-
netic dipole moments in amorphous TLSs. Instead, the
observation indicates that surface TLSs do not have a
differential Zeeman splitting in different orbital states
(Fig. 4(b)).

In conclusion, we report the first microscopic identi-
fication of a TLS bath from bulk crystalline defects in
silicon. Our study indicates that the acceptor-induced
loss can act as a near-future limiting factor for state-
of-the-art superconducting quantum devices on silicon.
We show that the acceptor-induced dielectric loss can
be reduced under a small magnetic field. These results
also show the need for ultrahigh purity silicon wafers to
enable next-generation superconducting qubits. We note
that our observations apply to other acceptors in silicon
which display similar electronic structures [43, 44]. In
addition to improvements to substrate purity, further
loss suppression can be achieved using vacuum-gap ca-
pacitors [45] or engineering the acceptor dynamics with
phononic crystals [46, 47]. Finally, further engineering

of interactions with boron acceptors can enable their use
as spin-orbit qubits strongly coupled to microwave and
mechanical resonators [32, 48–53].
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I. SUPPLEMENTARY EXPERIMENTAL METHODS

A. Experimental setup

The devices were measured using a vector network analyzer (Copper Mountain C1209) in a dilution refrigerator
(Bluefors, BF-LD250) with a base temperature of ∼ 9 mK at the mixing chamber. The output level of the network
analyzer was sometimes attenuated (Vaunix LDA-908V or Mini-Circuits fixed attenuators) or amplified (Mini-Circuits
ZX60-83LN-S+) to increase the dynamic range of the excitation power. The microwave excitation on the input line
of the dilution refrigerator was attenuated at different stages (20 dB at 4 K, 20 dB at 100 mK, 20 dB at mixing
chamber) using cryogenic attenuators (XMA Corporation, 2082-6418-20-CRYO Bulk) with a total attenuation of
60 dB. After attenuation, the excitation was filtered using an Eccosorb IR filter (QMC-CRYOIRF-002MF-S). We
connected the input line and the output line to a pair of RF switches (Radiall R583423141) for asynchronous device
multiplexing. For microwave detection, the signal was isolated with two isolators (Low Noise Factory LNF-CIC4 8A)
and filtered with a bandpass filter (Keenlion KBF-4/8-2S). After isolation and filtering, the signal was amplified with
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† Corresponding author: alp@berkeley.edu
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a HEMT amplifier (Low Noise Factory LNF-LNC4 8C) at 4 K followed by a low noise amplifier at room temperature
(Mini-Circuits ZX60-123LN-S+).

The devices were packaged in a copper box and mounted vertically inside two cylindrical magnetic shields (Cryo-
NETIC) for most measurements. For magnetic field dependence measurements, the devices were mounted outside the
magnetic shields. A superconducting coil (field factor ≈300 Gauss/Amp for the experimental sample-coil distance)
made from NbTi wires (Supercon SC-54S43-0.152mm) was mounted below the device to provide an in-plane magnetic
field.

B. Device fabrication

Prior to metallization, we cleaned the 6” silicon wafers in piranha solution (5 min) and dilute (25:1) HF. The
cleaned wafers were loaded into a DC sputtering system (MRC 943). The wafers were in-situ sputter-etch cleaned and
sputtered with ∼ 200 nm of niobium. Coplanar-waveguide resonators were patterned with optical lithography using a
maskless aligner (Heidelberg MLA150), and subsequently dry etched (Lam Research) with Cl2 chemistry, followed by
deionized water passivation and photoresist stripping (1165 Remover). The wafers were then diced (Disco DAD3240)
into 1 cm × 1 cm chips with a protective photoresist layer. Upon photoresist stripping, the chips were dipped in
buffered oxide etch (5:1) for ∼ 35 min, wirebonded onto a PCB, packaged in a copper box, and cooled down in a
dilution refrigerator with a base temperature of 8 mK.

C. Silicon substrate for bulk loss characterization

To study the excess dielectric loss induced from bulk crystalline defects, we fabricated superconducting resonators
following procedures in Sec. I B on prime-grade silicon wafers with different doping conditions. Each wafer was
specified with a wafer resistivity. Secondary ion mass spectrometry (EAG Eurofins) was used to accurately determine
the boron concentration in each wafer (detection limit [B] = 8× 1011 cm−3). The specifications of different wafers are
summarized here:

TABLE I: Specifications of silicon wafers.

Wafer Type Vendor Resistivity (Ω · cm) Growth method Boron concentration (cm−3)

Undoped NOVA Electronic Materials > 10000 Float zone < 8× 1011

Phosphorus doped University Wafer 50 - 70 Float zone < 8× 1011

Boron doped #1 University Wafer > 2500 Float zone 4.6 × 1012

Boron doped #2 University Wafer > 50 Float zone 6.7 × 1013

Boron doped #3 University Wafer 8− 13 Float zone 7.4 × 1014

Boron doped #4 Waferpro 1− 10 Czochralski 2.5 × 1015

D. Resonator design

Coplanar-waveguide resonators of different geometries were fabricated for different studies throughout the work.
The optical images of samples with different resonator designs are shown in Fig. S1.

Surface loss study: For the loss study with different surface participation, we swept the trace and gap widths of
quarter-wave resonators by more than an order of magnitude while maintaining a 50 Ω impedance (Fig. S1(a)). The
resonators were designed to have a coupling quality factor of ≈ 300 × 103. Their lengths were swept for frequency
multiplexing from 4 to 7.5 GHz. We estimated the total surface participation ratio for each resonator geometry using
the analytical formalism developed in Ref. [1], assuming a 3 nm surface contamination layer with a dielectric constant
of 10. We also calculated the energy participation ratio in bulk silicon using electrostatic simulation with COMSOL
Multiphysics. The parameters of the resonators are summarized in Table. II.

Bulk loss study: To characterize the bulk dielectric loss, we fabricated quarter-wave resonators with trace width
of 50 µm and gap width of 33.75 µm (Fig. S1(b)). Each chip contains eight resonators, and the resonator lengths were
swept for frequency multiplexing in a 1 GHz band centered around 6 GHz. The coupling quality factor was reduced
to around 40× 103 to improve the sensitivity to detect low-Q resonances on boron doped substrates.
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(a) (b) (c) (d)

FIG. S1: Optical images of samples with different resonator designs. (a) Resonator design with different surface
participation ratio. (b) Resonator design with low surface participation ratio. (c) Resonator design with narrow

trace and wide gap for magnetic field study. (d) Resonator design for magnetic field study of surface loss. Scale bar
represents 1 mm.

TABLE II: Resonator parameters for geometric sweeping.

Resonator # Trace width (µm) Gap width (µm) Surface participation ratio Bulk participation ratio

1 2 1.42 7.75× 10−3 9.04× 10−1

2 4 2.78 4.27× 10−3 9.12× 10−1

3 8 5.4 2.35× 10−3 9.16× 10−1

4 13 8.8 1.52× 10−3 9.18× 10−1

5 20 13.5 1.03× 10−3 9.19× 10−1

6 30 20.25 7.2× 10−4 9.20× 10−1

7 40 27 5.5× 10−4 9.20× 10−1

8 50 33.75 4.5× 10−4 9.20× 10−1

Magnetic field study (bulk loss): To probe the magnetic field response of loss on boron doped substrates,
we fabricated quarter-wave resonators with a trace width of 10 µm and a gap width of 40 µm (Fig. S1(c)). Such
dimensions were chosen to mitigate vortex losses due to magnetic field while maintaining a relatively low surface
participation. Each chip contains eight resonators, and the resonator lengths were swept for frequency multiplexing
in a 1 GHz band centered around 6 GHz. The coupling quality factor was designed to be around 50× 103.

Magnetic field study (surface loss): To probe the magnetic field response of loss induced by surface TLSs
on an undoped substrate, we fabricated half-wave resonators with a trace width of 16.3 µm and a gap width of
10 µm (Fig. S1(d)). After fabrication, we intentionally introduce excessive amorphous TLS on the surface by drop
casting Hydrogen Silsesquioxane. The chip contains three resonators with frequencies at 4.8, 5.7, and 6.6 GHz. The
coupling quality factor was designed to be around 300× 103.

The different chip designs together with the measurements performed on each of them are summarized here:

TABLE III: Summary of parameters and measurements for different resonator designs.

Chip design Trace (µm) Gap (µm) Surface participation ratio Figures

Surface loss study 2− 50 1.42− 33.75 7.75× 10−3 − 4.5× 10−4 2(b), S2

Bulk loss study 50 33.75 4.5× 10−4 2(c), 3, S3

Magnetic field study (bulk loss) 10 40 9.8× 10−4 4(c,d,f), S4, S5, S10

Magnetic field study (surface loss) 16.3 10 1.3× 10−3 4(e)
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E. Resonator measurement and data analysis

We probe the resonator loss by measuring the transmission through the microwave feedline on each chip. With
the side-coupled configuration, the resonance of each resonator shows up as a narrow dip in |S21|. With the large
variation of resonator loss on different substrates, the measurement bandwidth for each resonator were adjusted with
a total number of 500 − 1000 sampling points using an IF bandwidth of 10 Hz. S21 traces were averaged for noise
reduction for low power measurements.

The complex S21 traces were fitted using:

S21(f) = a× ei[ϕ+2π(f−fstart)τ ]
1−Q/Qc × (1 + 2i× df/f0)

1 + 2i×Q(f − f0)/f0
(1)

where a represents the baseline transmission away from the resonance, ϕ represents the phase offset, fstart is the starting
frequency of the measurement, τ represents the group delay, Q represents the total quality factor, Qc represents the
coupling quality factor, f0 is the center frequency of the resonator, and df is the asymmetric factor to account for
impedance mismatch.

The average photon number (⟨n⟩) inside the resonator with input power Pin can be estimated from the input-output
theory [2]. Here we describe the formalism for a generic coupling scheme where a cavity couples to two waveguide
ports. The dynamics of the cavity field â is:

dâ

dt
= −i(ω0 − ω)â− κi + κe1 + κe2

2
â+

√
κe1s1+ +

√
κe2s2+ (2)

where ω0 (ω) denotes the cavity (drive) frequency, κe1 and κe2 denote the coupling rate from the cavity to the two
waveguide ports, s1+ (s2+) denotes the input field from waveguide port 1 (port 2), and κi denotes the intrinsic decay
rate of the cavity, respectively. In the steady-state (dâ/dt = 0), the cavity field is:

â =

√
κe1s1+ +

√
κe2s2+

i(ω0 − ω) + (κi + κe1 + κe2)/2
(3)

For our resonators with a side-coupled configuration and single-sided excitation, we have κe1 = κe2 = κe/2 and
s2+ = 0. On resonance (ω0 = ω), the steady state cavity field is:

⟨â⟩ =
√

κe/2s1+
(κi + κe)/2

(4)

and we can convert input power (Pin = ℏω0|s1+|2) to average photon number (⟨n⟩) following [3]:

⟨n⟩ = |⟨â⟩|2 =
2κe

(κe + κi)2
Pin

ℏω0
=

2

ℏω2
0

Q2

Qe
Pin (5)

where Q (Qe) denotes the loaded (coupling) quality factor, and Pin is the input power at the resonator. By measuring
the loss through a closed loop of cables when the dilution fridge is at its base temperature, we estimated a total
attenuation of 85 dB in the input microwave chain due to cryogenic attenuators, as well as attenuation from coaxial
cables, and insertion loss from filters, RF switch, and PCB.

II. SUPPLEMENTARY DATA AND MEASUREMENTS

A. Surface participation dependence of Qi

In Fig. 2(b) of the main text, we presented the low-power Qi of resonators with different surface participation. The
power dependent Qi measurements on each resonator are shown in Fig. S2.

B. Doping dependence of Qi

In Fig. 3 of the main text, we presented the average low-power Qi of resonators fabricated on different silicon
substrates. The power dependent Qi measurements on each resonator are shown in Fig. S3.
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FIG. S2: Power-dependent measurement on individual resonators on undoped silicon (left) and boron doped silicon
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FIG. S3: Power dependence of Qi for individual resonators on different silicon substrates. For devices with low loss,
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(Qe ≪ Qi). The orange shaded regions indicate such low power regions with fitting results dominated by noise. The
dashed vertical lines indicate ⟨n⟩ ≈ 0.003 and ⟨n⟩ ≈ 0.6, respectively.

C. Magnetic field dependence of acceptor-induced dielectric loss

We performed magnetic field dependence study with resonators on two types of boron doped wafers. The results
presented in Fig. 4 of the main text were measured on boron doped wafer #3 (Float zone, [B] = 7.4 × 1014 cm−3).
Additional measurements were performed on resonators fabricated on boron doped wafer #4 (Czochralski, [B] =
2.5 × 1015 cm−3). The magnetic field dependence of Qi is summarized in Fig. S4. The boron-induced dielectric loss
is reduced upon applying a small magnetic field for both types of substrates.

The magnetic field induced loss reduction on boron doped silicon shows a strong temperature dependence. At
higher temperatures, the magnetic field response is suppressed. The temperature-dependent magnetic field response
on resonators fabricated on two types of boron doped substrates is summarized in Fig. S5.
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FIG. S5: Temperature dependence of the magnetic field response on resonators fabricated on a float zone grown
substrate with [B] = 7.4× 1014 cm−3 (top row), and a Czochralski grown substrate with [B] = 2.5× 1015 cm−3

(bottom row). The temperatures are specified at the mixing chamber plate.

III. SUPPLEMENTARY ANALYSIS

A. Electronic structure of acceptors and donors

Donor and acceptor defects in silicon have been widely studied for quantum applications. Here, we compare the
electronic structure of boron acceptors and phosphorus donors, and discuss their impact on bulk dielectric loss in
silicon.

The electronic structure of acceptor defects inherits the structure of the valence band maximum of silicon with
a two-fold orbital degeneracy and strong spin-orbit coupling (Fig. S6(a)) [4]. The acceptor based spin-orbit system
couples strongly to environmental perturbations from strain (HS) and electric (HE) fields. Therefore, the spin-orbit
system based on acceptors can be described as an effective two-level system causing dielectric loss. In the context
of spin qubits, these strong environmental sensitivities negatively influence the lifetime and coherence of acceptor
spins [5]. Therefore, acceptor defects normally cannot constitute a good qubit system. The extreme sensitivity of
acceptor defects to their local environment also results in a broad inhomogeneous distribution of the orbital splittings.
This distribution can be particularly large in typical nanofabricated devices due to additional lattice strain and electric
fields.

On the other hand, the electronic structure of donor spins inherits the structure of conduction band minimum of
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FIG. S6: Electronic structures of (a) acceptor and (b) donor defects.

silicon with a six-fold valley degeneracy (Fig. S6(b)). With valley-orbit splitting, the 1s orbital is split into 1s(A),
1s(T), and 1s(E) orbitals. The lowest orbital, 1s(A), for phosphorus defects is 11.8 meV (≈3 THz, or an equivalent
thermal energy of ≈150 K) below the higher 1s(T) orbital [6]. Therefore, at cryogenic temperatures, phosphorus
defects effectively provide an isolated spin degree of freedom in a singlet orbital. The lack of strong spin-orbit
coupling makes phosphorus spins a good qubit system with long lifetimes and coherence times [7–9]. Regarding
dielectric loss from phosphorus, no loss is expected from orbital transitions due to the large energy mismatch between
the orbital splitting (≈3 THz) and microwave frequencies of interest for typical superconducting devices (<10 GHz).
We note that donor-induced loss can occur at the spin resonance frequency due to magnetic coupling between donor
spins and microwave resonators. However, such effects are only significant at a large magnetic field for phosphorus
(g = 2) spins (≈2000 Gauss for a 5.6 GHz spin resonance). Additionally, such donor spin-induced loss will be a
narrow-band effect due to the narrow inhomogeneous distribution of the spin resonance frequencies.

B. Strain at the metal-silicon interface

In our experiment, we observe a broadband (> 1 GHz) boron-induced dielectric loss at all samples. This indicates
that the orbital transition frequency of boron acceptors has a large inhomogeneous distribution, even though no
intentional strain or electric field biases were applied. Such a large inhomogeneous distribution can originate from
strain at the metal-silicon interface due to differential thermal contraction of the thin metal film and silicon substrate
upon cooling the sample from the film deposition temperature to cryogenic temperatures [10].

At room temperature, we characterize the niobium film stress to be a compressive stress of 150 MPa on a prime-
grade silicon wafer. Using the film stress at room temperature as the initial condition, we perform finite-element
simulation of strain induced by differential thermal contraction using COMSOL Multiphysics. For niobium, we used a
Young’s modulus of 105 GPa, a Poisson ratio of 0.4, and a temperature dependent coefficient of thermal expansion [11].
For silicon, we used an anisotropic model for its elasticity matrix (D11 = 166 GPa, D12 = 64 GPa, D44 = 80 GPa),
and a temperature dependent coefficient of thermal expansion [12].

In Fig. S7, we show the simulated strain distribution for the low-surface participation ratio resonator (trace width
of 50 µm, gap width of 33.75 µm) at 10 mK. Near the edges of the metal film, the strain can be as high as 2× 10−5,
and can extend deep into the bulk. Therefore, this thermal strain is a possible origin of the broad inhomogeneous
distribution of boron orbital splittings. We note that our simulation uses linear elastic approximation for thin-film
niobium, and does not consider its yield behavior (transition from elastic behavior to plastic behavior). Therefore,
the simulated thermal strain only provides a simple, order-of-magnitude estimation for a rather complicated strain
environment.

C. First-principles estimation of acceptor-induced loss

Before providing a first-principles estimation of acceptor-induced loss, we first qualitatively estimate the loss from
amorphous TLSs and from boron defects based on their effective density and the respective energy participation ratio
for our low surface participation ratio resonator. For TLSs, we assume a density of 1014 cm−3GHz−1 [13]. For boron
doped silicon, the effective density of boron defects depends on the inhomogeneous distribution of boron resonances
which strongly depends on static stray strain and electric field in the silicon substrate. For a doping concentration
of 1.0 × 1015cm−3 (15 Ω · cm) and a conservative inhomogeneous distribution of 100 GHz, the effective density is
1013 cm−3GHz−1. The energy participation ratio for surface TLSs in the low surface participation ratio design is
4.5 × 10−4 while the energy participation ratio for boron in bulk defects silicon is ϵr/(1 + ϵr) ≈ 0.92, where ϵr is
the dielectric constant of silicon. With these parameters and assuming similar electric dipole moments for TLSs and
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FIG. S7: Strain distribution at the metal-silicon interface from differential thermal contraction. Half of the
cross-section is shown due to the symmetry of the geometry. The strain tensor components are given in the cubic
[100] basis (xyz). The Z direction is aligned with the silicon [001] direction while the Y direction is aligned with

silicon [110] direction, based on the silicon wafer orientation and the sample cut directions.

boron defects, the acceptor-induced loss will be 200 times more compared to TLS-induced loss.
From the above discussion, we see that acceptor-induced loss can far exceed TLS-induced loss at high doping

concentrations. The loss estimation depends strongly on the inhomogeneous distribution of boron resonances. We
calculate the spatial distribution of boron orbital splittings for the low surface participation ratio resonator using
the thermal strain and boron Hamiltonian (Eq. (2-4) in the main text, Fig. S8(a)). The spatial distribution shows
that the orbital splitting can be as high as 100 GHz near the surface, and strain-induced splittings in the boron
ensemble can extend deep in the bulk. The energy participation in the bulk is also spatially dependent (Fig. S8(b)).
Therefore, it is critical to include spatial dependences of both energy participation and boron resonances to estimate
the boron-induced dielectric loss.

(a) (b) (c)

FIG. S8: (a) Spatial distribution of boron orbital splittings due to thermal strain at metal-silicon interface. (b)
Spatial distribution of electrical energy in silicon. (c) Weighted energy participation (P (f0)) of boron acceptors as a

function of boron orbital splittings.

Defect-induced dielectric loss can be estimated from the first principles using the imaginary part of atomic suscepti-
bility: χ′′(f, f0) = µ2Ng(f, f0)/(2ϵ0ℏ), where µ is the electric transition dipole moment, ϵ0 is the vacuum permittivity,
N represents the volumetric dopant density, and g(f, f0) represents the normalized Lorentzian lineshape of the atomic
transition with a resonance frequency f0 [14].

For a generic device geometry, the observed loss tangent at frequency f is a participation-ratio averaged loss tangent:

tanδ0(f) =

∫

V

p(r)tanδ0(f, r)dV (6)

where p(r) represents the volumetric density of bulk energy participation ratio (
∫
V
p(r)dV ≈ 0.92) and tanδ0(f, r)

denotes a spatially varying loss tangent as a function of spatial location r.
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The spatial dependence in loss tangent arises from the spectral inhomogeneity of boron resonances due to the
spatially varying strain. The defect-induced loss tangent can be calculated from the imaginary part of atomic suscep-
tibility:

tanδ0(f, r) =

∫

f0

q(f0, r)χ
′′(f, f0)

ϵr
df0 (7)

where q(f0, r) denotes the spectral distribution of boron resonances at location r (
∫
q(f0, r)df0 = 1), and ϵr represents

the dielectric constant of silicon. Combining Eq. 6 and Eq. 7, the observed loss tangent is represented by a double
integral over space and frequency:

tanδ0(f) =

∫

V

∫

f0

p(r)q(f0, r)χ
′′(f, f0)

ϵr
df0dV (8)

We can evaluate the volume integral of p(r)q(f0, r) numerically using a uniform sampling of the spatial distribution
of boron orbital splittings (Fig. S8(a)) and energy participation (Fig. S8(b)):

P (f0) =

∫

V

p(r)q(f0, r)dV =
∑

V

p(r)∆V × q(f0, r) (9)

where p(r)∆V represents the energy participation ratio in volume ∆V . For each small volume ∆V , we assume all the
boron acceptors inside share the same orbital splitting. Therefore, we can numerically evaluate the weighted energy
participation P (f0) in the unit of GHz−1 as a function of frequency f0 (Fig. S8(c)). Near our device frequencies
(≈ 6 GHz), P (f0 = 6 GHz) ≈ 0.03/GHz. Physically, P (f0 = 6 GHz) ≈ 0.03/GHz means 3% of the total electrical
energy is experiencing dielectric loss from boron defects distributed in a 1 GHz band around 6 GHz.

In the low power limit free from atomic saturation effects, the dielectric loss tangent is:

tanδ0(f) =

∫
χ′′(f, f0)P (f0)df0/ϵr (10)

With a smooth, slowly varying P (f0), we have:

tanδ0(f) =

∫
χ′′(f, f0)P (f0)df0/ϵr = P (f)

∫
χ′′(f, f0)df0/ϵr =

µ2P (f)

2ϵ0ϵrℏ
N (11)

For our silicon wafer with the highest boron concentration (N = 2.5× 1015 cm−3), using P (ν = 6 GHz) = 0.03/GHz

and µ =
√
1/3 × 0.26 D, we estimate the boron-limited quality factor (1/tanδ0(f = 6 GHz)) to be approximately

1 × 106. The factor of
√

1/3 in µ accounts for the random alignment of the electric dipole moment with respect to
the direction of the electric field from the resonator. Interestingly, this first-principles estimation of quality factor is
about 400 times higher than our experimental observation. Further investigation is needed to resolve the discrepancy.
The difference may be accounted by a combination of (1) a different inhomogeneous distribution from unaccounted
strain contributions beyond the simplified thermal strain, (2) the modification of electric dipole moment with the
static stray strain [15], (3) the electric dipole moment being much higher than the literature values in Ref. [16]. We
note that the electric dipole moment was estimated from dielectric loss measurement on unstrained silicon in Ref. [16].
In future work, it would be interesting to perform a Stark shift measurement on single boron acceptors to extract the
electric field coupling coefficients more accurately.

D. Theoretical analysis of saturation behavior for a four-level system

Defect-induced dielectric loss can be saturated with microwave excitation and/or thermal excitation. The saturation
behavior depends strongly on the detailed electronic structure of the defect. For the case of boron acceptors, the
electronic structure under static crystal strain is a four-level system with a two-fold degeneracy in the two orbital
branches (Fig. S9(a)). Under a small magnetic field, the level degeneracy is lifted, and the electronic structure contains
four distinct levels with generalized spin sublevels (Fig. S9(b)). In this case, the generalized spin states can have long
lifetimes [5]. We observe that applying a small magnetic field can lead to strong reduction of boron-induced loss
(Fig. 4 in the main text and Fig. S4). At the same time, the magnetic response disappears at elevated temperatures
(Fig. S5). In this section, we perform theoretical analysis of saturation power of a four-level system under different
conditions.
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The electric and strain couplings of boron levels depend strongly on the details of static crystal strain. To reduce
the complexity of the problem, our analysis is performed assuming static tensile strain with a single tone drive. Under
tensile strain, only |1⟩ ↔ |3⟩ and |2⟩ ↔ |4⟩ transitions are electric dipole allowed. At the same time, |1⟩ ↔ |3⟩ and
|2⟩ ↔ |4⟩ (|1⟩ ↔ |4⟩ and |2⟩ ↔ |3⟩) transitions share the same spontaneous phonon emission rate γ′ (γ̃).

Ω

Δ

Ω

δ
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|3〉
|4〉

Ω Ω

|1〉 |2〉

|3〉 |4〉
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FIG. S9: Level diagram with a resonant single-tone drive for a four-level system (a) at zero magnetic field and (b) at
a non-zero magnetic field. Ω denotes the driving strength. δ and ∆ denote the Zeeman splittings within the two

orbital branches. γ′ and γ̃ denote the relevant spontaneous decay rates. The actual orbital decay rates also include
thermally-assisted processes.

Four-level system at zero magnetic field: The saturation behavior of defect-induced dielectric loss can be
related to the population difference of the ground and excited states in steady state [14]. The Hamiltonian of a
four-level system (Fig. S9(a)) in the rotating frame of a resonant drive is:

H/ℏ = Ω∗(|1⟩ ⟨3|+ |2⟩ ⟨4|) + Ω(|3⟩ ⟨1|+ |4⟩ ⟨2|) (12)

The system evolves following the Lindblad master equation:

ρ̇ = − i

ℏ
[H, ρ] +

∑

i

D[Ci]ρ (13)

with the superoperator defined as D[C]ρ = CρC† − 1
2 (C

†Cρ + ρC†C). There are eight collapse operators denot-

ing the phonon assisted relaxation paths: C1 =
√
n̄γ′ |3⟩ ⟨1|, C2 =

√
(n̄+ 1)γ′ |1⟩ ⟨3|, C3 =

√
n̄γ̃ |3⟩ ⟨2|, C4 =√

(n̄+ 1)γ̃ |2⟩ ⟨3|, C5 =
√
n̄γ̃ |4⟩ ⟨1|, C6 =

√
(n̄+ 1)γ̃ |1⟩ ⟨4|, C7 =

√
n̄γ′ |4⟩ ⟨2| and C8 =

√
(n̄+ 1)γ′ |2⟩ ⟨4|. n̄ de-

notes the thermal phonon occupancy, and γ′ and γ̃ are the spontaneous phonon emission rates from |3⟩ → |1⟩
(|4⟩ → |2⟩) and |3⟩ → |2⟩ (|4⟩ → |1⟩), respectively. Based on the master equation, the equations of motion describing
the evolution of population and coherences can be written as

ρ̇11 = −(γ′ + γ̃)n̄ρ11 + (1 + n̄)(γ′ρ33 + γ̃ρ44) + iΩρ13 − iΩ∗ρ31 (14)

ρ̇22 = −(γ′ + γ̃)n̄ρ22 + (1 + n̄)(γ̃ρ33 + γ′ρ44) + iΩρ24 − iΩ∗ρ42 (15)

ρ̇33 = −(γ′ + γ̃)(1 + n̄)ρ33 + n̄(γ̃ρ22 + γ′ρ11) + iΩ∗ρ31 − iΩρ13 (16)

ρ̇13 = −(γ′ + γ̃)(1/2 + n̄)ρ13 + iΩ∗(ρ11 − ρ33) (17)

ρ̇24 = −(γ′ + γ̃)(1/2 + n̄)ρ24 + iΩ∗(ρ22 − ρ44) (18)

ρ̇12 = −(γ′ + γ̃)n̄ρ12 + i(Ωρ14 − Ω∗ρ32) (19)

ρ̇14 = −(γ′ + γ̃)(1/2 + n̄)ρ14 + iΩ∗(ρ12 − ρ34) (20)
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ρ̇23 = −(γ′ + γ̃)(1/2 + n̄)ρ23 + iΩ∗(ρ21 − ρ43) (21)

ρ̇34 = −(γ′ + γ̃)(1 + n̄)ρ34 + iΩ∗ρ32 − iΩρ14 (22)

We note that ρij = ρ∗ji and ρ11 + ρ22 + ρ33 + ρ44 = 1. Population in the steady state (ρ̇ij = 0 and ρ̇ii = 0) can be
solved as

ρ11 = ρ22 =
1

2
× (1 + n̄)(γ′ + γ̃) +R

(1 + 2n̄)(γ′ + γ̃) + 2R
(23)

ρ33 = ρ44 =
1

2
× n̄(γ′ + γ̃) +R

(1 + 2n̄)(γ′ + γ̃) + 2R
(24)

where R = 4|Ω|2/[(1 + 2n̄)(γ′ + γ̃)] is a pumping rate. Note that if R ≫ (γ′ + γ̃)(n̄+ 1
2 ), we achieve equal population

in the ground and excited states (ρ11 = ρ22 = ρ33 = ρ44 = 1/4).

In order to quantify the critical Rabi frequency, we define the saturation condition as ρ11 − ρ33 = (ρ11 − ρ33)0/
√
2,

where (ρ11−ρ33)0 = 1/(4n̄+2) is the initial population difference at thermal equilibrium under no drive. The critical
Rabi frequency that achieves this condition is

|Ωc(B = 0)|2 =
(γ′ + γ̃)2

8
(2n̄+ 1)2(

√
2− 1) (25)

We note that Eq. 25 also holds for a pure two-level system with a spontaneous decay rate of γ′ + γ̃. This validates
the two-level system approximation when no magnetic field is applied.

Four-level system in a magnetic field: Under a magnetic field, the electronic structure of boron is a four level
system with different Zeeman splittings (∆ and δ) in the two orbital branches. The Hamiltonian of such four-level
system (Fig. S9(b)) in the rotating frame of the drive can be written as:

H/ℏ = ∆ |2⟩ ⟨2|+ δ |4⟩ ⟨4|+Ω(|3⟩ ⟨1|+ |4⟩ ⟨2|) + Ω∗(|1⟩ ⟨3|+ |2⟩ ⟨4|) (26)

Similar to the zero magnetic field case, there are eight collapse operators denoting the phonon assisted decay paths:
C1 =

√
n̄γ′ |3⟩ ⟨1|, C2 =

√
(n̄+ 1)γ′ |1⟩ ⟨3|, C3 =

√
n̄γ̃ |3⟩ ⟨2|, C4 =

√
(n̄+ 1)γ̃ |2⟩ ⟨3|, C5 =

√
n̄γ̃ |4⟩ ⟨1|, C6 =√

(n̄+ 1)γ̃ |1⟩ ⟨4|, C7 =
√
n̄γ′ |4⟩ ⟨2| and C8 =

√
(n̄+ 1)γ′ |2⟩ ⟨4|. n̄ denotes the thermal phonon occupancy, and γ′

and γ̃ are the spontaneous emission rates from |3⟩ → |1⟩ (|4⟩ → |2⟩) and |3⟩ → |2⟩ (|4⟩ → |1⟩), respectively. The spin
lifetime within each orbital branch is much longer than orbital lifetimes [5]. Therefore, we neglect the spin relaxation
process between |2⟩ ↔ |1⟩.

Assuming radiative decoherence only, we obtain the equations of motion for the populations and coherences using
the Lindblad Master Equation (Eq. 13):

ρ̇11 = −(γ′ + γ̃)n̄ρ11 + (1 + n̄)(γ′ρ33 + γ̃ρ44) + iΩρ13 − iΩ∗ρ31 (27)

ρ̇22 = −(γ′ + γ̃)n̄ρ22 + (1 + n̄)(γ̃ρ33 + γ′ρ44) + iΩρ24 − iΩ∗ρ42 (28)

ρ̇33 = −(γ′ + γ̃)(1 + n̄)ρ33 + n̄(γ̃ρ22 + γ′ρ11)− iΩρ13 + iΩ∗ρ31 (29)

ρ̇13 = −(γ′ + γ̃)(1/2 + n̄)ρ13 + iΩ∗(ρ11 − ρ33) (30)

ρ̇24 = −(γ′ + γ̃)(1/2 + n̄)ρ24 + i(δ −∆)ρ24 + iΩ∗(ρ22 − ρ44) (31)

ρ̇12 = −(γ′ + γ̃)n̄ρ12 + i∆ρ12 + iΩρ14 − iΩ∗ρ32 (32)

ρ̇14 = −(γ′ + γ̃)(1/2 + n̄)ρ14 + iδρ14 + iΩ∗(ρ12 − ρ34) (33)

ρ̇23 = −(γ′ + γ̃)(1/2 + n̄)ρ23 − i∆ρ23 + iΩ∗(ρ21 − ρ43) (34)
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ρ̇34 = −(γ′ + γ̃)(1 + n̄)ρ34 + iδρ34 + iΩ∗ρ32 − iΩρ14 (35)

For large detuning (|∆ − δ| ≫ |Ω|), we can ignore the coherences between transitions detuned from the drive
(ρ24 ≈ 0, ρ23 ≈ 0, ρ14 ≈ 0, ρ12 ≈ 0). The steady state populations and coherences under drive can then be evaluated
with ρ̇11 = ρ̇22 = ρ̇33 = ρ̇13 = 0 (steady state condition) and ρ11 + ρ22 + ρ33 + ρ44 = 1 (conservation of population):

ρ11 =
n̄(1 + n̄)[2(1 + n̄)γ′(γ′ + γ̃) +R(2γ′ + γ̃)]

R[1 + 8n̄(1 + n̄)]γ′ +R(1 + 2n̄)2γ̃ + 4n̄(1 + n̄)(1 + 2n̄)γ′(γ′ + γ̃)
(36)

ρ22 =
(1 + n̄)[2n̄(1 + n̄)γ′(γ′ + γ̃) +R(γ′ + 2n̄γ′ + γ̃ + n̄γ̃)]

R[1 + 8n̄(1 + n̄)]γ′ +R(1 + 2n̄)2γ̃ + 4n̄(1 + n̄)(1 + 2n̄)γ′(γ′ + γ̃)
(37)

ρ33 =
n̄(1 + n̄)[2n̄γ′(γ′ + γ̃) +R(2γ′ + γ̃)]

R[1 + 8n̄(1 + n̄)]γ′ +R(1 + 2n̄)2γ̃ + 4n̄(1 + n̄)(1 + 2n̄)γ′(γ′ + γ̃)
(38)

ρ44 =
n̄[2n̄(1 + n̄)γ′(γ′ + γ̃) +R(γ′ + 2n̄γ′ + n̄γ̃)]

R[1 + 8n̄(1 + n̄)]γ′ +R(1 + 2n̄)2γ̃ + 4n̄(1 + n̄)(1 + 2n̄)γ′(γ′ + γ̃)
(39)

where R = 4|Ω|2/[(1 + 2n̄)(γ′ + γ̃)] is a pumping rate. We observe that ρ22 > ρ11 holds with R > 0. This shows the
generation of ground state population imbalance with a selective drive. The optical pumping process is competing
with the phonon-assisted relaxation process that depletes ρ22 at a rate of n̄(γ′ + γ̃). When R ≫ n̄(γ′ + γ̃) and n̄ ≪ 1,
the ground state is fully polarized (ρ22 ≈ 1).

In order to quantitatively calculate the critical Rabi frequency, we define the saturation condition as ρ11 − ρ33 =
(ρ11 − ρ33)0/

√
2 where (ρ11 − ρ33)0 = 1/(4n̄+ 2) is the initial population difference at thermal equilibrium under no

drive. The critical Rabi frequency that achieves this condition is:

|Ωc(B > 0)|2 =
n̄(1 + n̄)(1 + 2n̄)2γ′(γ′ + γ̃)2(

√
2− 1)

γ′ + 8n̄(1 + n̄)γ′ + γ̃ + 4n̄(1 + n̄)γ̃
(40)

Comparing Eq. 25 and Eq. 40, we can calculate the ratio of saturation power for a four-level system with and
without magnetic field:

Pc(B = 0)

Pc(B > 0)
=

nc(B = 0)

nc(B > 0)
=

∣∣∣∣
Ωc(B = 0)

Ωc(B > 0)

∣∣∣∣
2

= 1 +
1

8n̄(n̄+ 1)
+

γ̃

8n̄(n̄+ 1)γ′ +
γ̃

2γ′ (41)

Two remarks can be made here: (1) the ratio of saturation power with and without a magnetic field is greater than
1. This is consistent with the intuition that the ability to pump into a dark state reduces saturation power, (2) the
magnetic field induced contrast has a 1/n̄ dependence for n ≪ 1, and is therefore strongly temperature dependent.

We fit the temperature dependence of the saturation power change induced by a magnetic field on two samples with
high boron doping. The generic form of power dependent loss tangent for superconducting resonators is expressed as:

tan δ = tan δ0
A(T )√

1 +
(

n
nc

)β (42)

where tan δ0 indicates the loss tangent with no drive at zero temperature, and nc denotes the critical photon number
that suppresses the loss by

√
2, β is a geometry-dependent fit parameter, and A(T ) = tanh(ℏω/(2kBT )) represents

thermal saturation. The fitting parameter β, which is not captured in theory, is phenomenologically added to account
for electrical field distribution. We perform our analysis in a regime where n/nc ≫ 1, such that:

log(tan δ) = log (A(T ) tan δ0)−
1

2
log

(
1 +

(
n

nc

)β
)

≈ log (A(T ) tan δ0)−
β

2
log(n) +

β

2
log(nc) (43)

We fit the data in Fig. S5 to log(tan δ) = −a log(n) + b, where a = β/2 and b = log(A(T ) tan δ0) +
β
2 log(nc) are

fit parameters, as seen in Fig. S10(a,b). The fit parameter a (resonator geometry dependent) is shared at a given
temperature for both B = 0 and B > 0 cases. Note that ∆b = b(B = 0) − b(B > 0) = a log (nc(B = 0)/nc(B > 0))
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when we assume the zero-power loss tangent is magnetic field independent (A(T ) tan δ0(B = 0) = A(T ) tan δ0(B > 0)).
Therefore, the ratio between critical photon numbers can be calculated as

nc(B = 0)

nc(B > 0)
= 10∆b/a (44)

In Fig. S10(c), we plot the experimentally extracted ratios of critical photon numbers as a function of temperature
for two boron-doped samples and compare them to the theoretical prediction based on Eq. 41. For both samples,
we observe that the critical photon number is reduced by approximately an order of magnitude with an applied
magnetic field at our base temperature (8 mK). At the same time, the magnetic field response disappears at slightly
elevated temperatures around 100 mK. The experimental results qualitatively share the similar temperature-dependent
behavior as the theoretical prediction. However, the experimental temperature is about 65 mK lower than the
theoretical prediction to achieve the same ratio of critical photon numbers. This discrepancy can be accounted for if
the actual sample temperature is higher than the temperature reading of the mixing chamber of the fridge. Indeed, we
observed a non-negligible thermal excited state population (2.8%) for a superconducting transmon qubit at 6.3 GHz
measured in the same setup [17]. This excited state population translates to a chip temperature of 84 mK when the
mixing chamber temperature reads 10 mK. Therefore, we expect a higher contrast in magnetic field response when
the sample is better thermalized.

Even though Eq. 41 explains the qualitative trend of the saturation photon number ratio, it does not capture all
the experimental observations. We note that the high temperature critical photon number ratio is estimated higher in
theory. The discrepancy between our experiment and the theory may originate from: (1) our master equation model
only takes into account the boron defects on resonance with the resonator. The large bath of off-resonant boron
defects can also lead to loss and are not accounted, (2) the fitting parameter β is not predicted by theory but rather
a phenomenologically included parameter to account for electric field distribution in a real device.
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FIG. S10: Power dependence of average loss tangent of eight resonators at TMXC = 8 mK with/without magnetic
field in (a) a float-zone grown substrate with [B] = 7.4× 1014 cm−3 and (b) a Czochralski grown substrate with [B]
= 2.5× 1015 cm−3. The dashed lines are linear fits between log(tan δ) and log(n) based on Eq. 43. (c) Theoretical
and experimental critical photon number ratio with and without magnetic field as a function of temperature for two

boron doping concentrations and three branching ratios (γ̃/γ′). In theoretical calculations, we use the average
frequency (≈ 6.1 GHz) of our resonators to convert thermal occupancy to temperature.
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